

Quality of life

PASSENGER TRANSPORTATION ANALYSIS USING SMARTPHONE SENSORS AND DIGITAL SURVEYS

Arto Perttula¹, Nhan Nguyen¹, Jussi Collin¹, Jani-Pekka Jokinen² ¹Pervasive Computing, Tampere University of Technology, Finland ²Department of Computer Science, Aalto University, Finland

PUBLIC TRANSPORTATION IS CHANGING

- Usage of electric vehicles is increasing rapidly also in public transportation
- It is important to be able to recognize used vehicle and measure qualities of the ride automatically in Mobility as a Service (MaaS)
 - Measurement of travel conditions and passenger satisfaction
 - For automatic billing
- We study this from measurement point of view
- The work is a part of Living Lab Bus (LLB) project

INITIAL GOALS

- To recognize whether the user onboard/offboard
- To recognize whether the user is in electric/diesel bus
- To automatically estimate the passenger satisfaction

DATA COLLECTION

- The measurements were made using Android-based smartphone using AndroSensorapplication in both – diesel and electric – buses
 - 2Hz sampling frequency was used
- Digital passenger survey was performed simultaneously with smartphone measurements

Sensor	Dimensions	Unit	2° 🔟 🔟 9%	15:0
Accelerometer	3	m/s ²	AndroSensor 🧷 🕤	:
Gyroscope	3	rad/s		
Light	1	lux	ACCELEROMETER: (4.0mA)	
Magnetometer	3	μT	y:-3.6530 m/s ² z:+12.5709 m/s ²	?
Barometer	1	hPa	GRAVITY: (8.4mA)	
Sound	1	dB	y:-2.7978 m/s ² z:+9.3980 m/s ²	
GNSS Latitude	1	deg	Σ:+9.8066 m/s ² LINEAR ACCELERATION: (8.4mA)	
GNSS Longitude	1	deg	x:-0.0898 m/s ² y:-0.8551 m/s ²	
GNSS Altitude	1	m	Σ:+3.1729 m/s² Σ:+3.2873 m/s²	?
GNSS Speed	1	km/h	GYROSCOPE: (4.0mA) X:-0.0496 rad/s X:-0.0221 rad/s	
GNSS Accuracy	1	m	Z:+0.0000 rad/s	?
GNSS Orientation	1	deg	200.0000 lux	?
GNSS Satellites	1	number	MAGNETIC FIELD: (0.4mA) ▲ X:-5.50 µT	

DATA PROCESSING

- Machine learning (ML) algorithms in Matlab ML Toolbox were used for classification of sensor data
 - Essential features were used for context recognition
- Also weather data from Finnish Meteorological Institute (FMI) and Foreca were utilized
- Results from survey were joined with the results from sensor measurements

DATA SETS

- 4 data sets used for testing:
 - 1: May 9th 2017, 15:00 to 17:00
 4 diesel and 2 electric buses
 - 2: May 9th 2017, 18:15 to 20:45
 3 diesel and 3 electric buses
 - 3: May 10th 2017, 15:00 to 17:00
 3 diesel and 1 electric buses
 - 4: May 10th 2017, 18:15 to 20:45
 6 diesel and 1 electric buses

RESULTS: ONBOARD/OFFBOARD

- 50% of 3rd data set used as a training data
- Different sets of features tested

- Classifiers:
 - TEA: Tree Ensemble AdaBoost
 - KNN: K-Nearest Neighbors
 - NB: Naive Bayes

Training	Test data	Type of Classifier	Accuracy of feature sets [%]						
data			1 st	2 nd	3 rd	4 th	5 th	Average	
50% of 3 rd data set -	1 st data set	TEA	92.71	95.45	91.33	92.46	95.94	93.58	
		KNN	90.48	90.69	66.64	75.12	95.5	83.69	
		NB	74.52	73.27	73.11	73.32	97.05	78.25	
	2 nd data set	TEA	78.14	80.12	80.02	79.23	75.27	78.56	
		KNN	88.18	88.15	73.33	76.61	75.69	80.39	
		NB	84.71	84.24	84	83.86	77.21	82.8	
	50% left	TEA	97.24	97.59	97.7	96.79	96	97.06	
	of 3rd	KNN	99.18	99.25	99.46	99.61	98.24	99.15	
	data set	NB	94	93.94	94.97	94.23	96.3	94.69	
	10.00 - 10.00 (and a 2.2	Average	88.8	89.19	84.51	85.69	89.69		

RESULTS: DIESEL/ELECTRIC

- 50% of 1st data set used as a training data
- Different sets of features tested

- Classifiers:
 - TEG: Tree Ensemble GentleBoost
 - KNN: K-Nearest Neighbors
 - DA: Discriminant Analysis

Training	Test data	Type of Classifier	Accuracy of feature sets [%]						
data			1 st	2 nd	3 rd	4 th	5 th	6 th	Average
50% of 1 st data set	50%	TEG	100	99.98	99.93	97.33	96.03	98.5	98.63
	left of	KNN	99.87	99.54	99.64	99.52	94.78	98.52	98.65
	1 st data set	DA	97.3	93. <mark>4</mark> 7	94.89	94.65	89.59	92.93	93.81
	2 nd data set	TEG	76.9	82.31	83.08	79.46	87.04	87.01	82.63
		KNN	77.47	78.49	78.35	78.44	81.69	89.2	80.60
		DA	73.8	85.77	83.99	78.69	88.87	88.17	83.22
	3 rd data set	TEG	86.36	85.86	88.66	88.45	87.78	88.8	87.65
		KNN	81.3	81.55	80.68	81.47	79.89	87.25	82.02
		DA	89.37	95.3	93.8	91.43	88.82	94.86	92.26
	4 th data set	TEG	61.51	63.81	70.84	62.24	78.3	78.22	69.15
		KNN	64.97	61.48	61.53	61.22	73.76	84.89	67.98
		DA	71.04	73.64	66.53	53.85	88.33	87.44	73.47
	<u>.</u>	Average	81.66	83.43	83.49	80.56	86.24	89.65	

RESULTS: PASSENGER SATISFACTION

- The passengers evaluated their satisfaction for the bus ride on scale 1 to 5, i.e., very uneven very smooth driving
- The average grade was 3.80 for all passengers, 3.77 for passengers traveling in diesel buses and 3.85 for electric buses
- The focus was on analysing the dependence between the satisfaction for the bus ride and the sensor measurements

RESULTS: PASSENGER SATISFACTION

CONCLUSIONS

- Due to slow sampling frequency (2Hz), important properties of the ride were not visible in the sensor data
- However, the context was recognized relatively well
 - Gives good basis for deeper analysation of the ride properties
- There are still features that needs further research

FUTURE WORK

- Measurements using higher sampling frequency (100Hz)
- Utilizing carrier to noise values of GNSS
 - Have showed promising results in our earlier studies
- Utilizing sensors integrated to buses
- Research on suitable ML methods to this research field

LIVING LAB BUS

SIGN UP FOR A DEMO!

